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ABSTRACT 

A practical method is presented for the calculation of reflection magnitude from curved surfaces in the 

context of acoustical simulation using NURBS models (for which minimum and maximum curvatures are 

known) backed with polygon approximations of geometry (a common means of geometrical representation 

in computer aided design). The new method is similar in approach to the Biot- Tolstoy-Medwin method of 

edge diffraction, but also incorporates a method developed by DesChamps in the 1970’s (and later applied 

to acoustics by Pierce) to correctly calculate the effect of the reflecting surface on the radii of the wavefront. 

First, specular reflections from the surface are found using the image source method and edge querying 

techniques. The extent of the surface which reflects specularly is determined by clustering reflections in an 

appropriate way - for convex surfaces, a point - for cylindroid sections, a line or curve - for spheroid 

surfaces, a polygon approximation of the surface between reflecting points. Once the reflecting extent is 

found, an explicit continuous-time integral is calculated for the reflecting path in terms of root-mean-square 

pressure using DesChamps’ method. The impact of phase is determined by convolving this function with a 

pulse of the correct time and frequency characteristics. 
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1. INTRODUCTION 

Traditionally, geometrical acoustics prediction techniques (as well as simulation in many other 

disciplines) rely heavily on the inverse square law of intensity for the prediction of spherical sound 

propagation. This technique works fine for most applications, if the wave-front never deviates from a 

spherical curvature. Unfortunately, there are many objects that can change the shape of a 

wave-front’s curvature. Edges are one case. In Peter Svensson’s formulation of the 

Biot-Tolstoy-Medwin method for edge diffraction (5), the change in wave-front shape is accounted 

for using Huygen’s principle – a wave-front can be constructed using many small point sources along 

its surface. Using many spherical secondary sources with strength calculated based on ingoing and 

outgoing angle relative to the wedge, the method constructs the wave diffracted by an edge – each 

source propagating according to inverse distance law in pressure domain (the square of which is 

proportional to inverse square law in intensity). The product of this method is a root-mean-square 

pressure profile (which he refers to as impulse responses) which is then convolved with a signal 

comprised of the power and frequency content of the initial sound source.  

Concave and convex curves will also alter a reflecting wave-front. In the case of reflections from 

curved surfaces, the inverse square law breaks down. Intensity may actually increase or decrease 

more quickly with distance following reflection. The method discussed here addresses this specific 

case with an aim to produce reliable deterministic geometrical acoustics calculations of rooms with 

curved geometry. It is similar to Svensson’s formulation in that it produces root mean square 

pressure based “impulse responses” for sound reflections with a sustained presence in the 

time-domain. It differs in that it does not rely on a Huygens-style inverse distance construction of the 

wavefront, but instead calculates the curvature of the wave-front in order to predict the intensity (and 

resulting rms pressure) of the reflection impulse response. 

2. THEORY 

2.1 Previous Work 

The most recent comprehensive treatment of curved surface reflection that we are aware of is 

Vercammen’s PHD thesis (1), in which he makes a complete comparison of existing methods with 
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regard to accuracy in simulation of focused sound reflections. One determination he makes is that 

the image-source method does a poor job predicting sound reflections. This is not surprising, as there 

are several ways that the image source method falls short  for this purpose. 1) Whether or not it finds 

a sufficient number of paths depends on the model of the space. It is very likely that it would miss 

important paths, or even include too many (because it is not accounting for the area contributing, but 

dumbly adding them all together). 2) The equations for the traditional image source method are 

designed for reflections from flat surfaces. They do not make considerations for what happens to the 

shape of the wave-front following reflection. Despite these reasons, we would like to be clear that a 

deterministic geometrical method can be designed which can be used alongside the image source 

method in order to properly process reflections from curved geometry.  

In the 1980’s, several prominent researchers in acoustics published methods for calculating 

reflections from curved surfaces. Jens Holger Rindel published an empirical method which he rela ted 

back to his ‘characteristic distance’ concept. (2) This method predicted the power of a reflection with 

very few variables, and little computation. While this would have been very useful for the time, 

desktop computers are now able to leverage greater computational resources and perform more 

sophisticated calculations with much more precise results. There is the potential to predict the entire 

reflection structure of a curved surface and apply phase, using a more physical me thod.  

Ironically, methods that could achieve this were being studied a decade earlier in the field of  

electromagnetics. This work is summarized very neatly in the work of Deschamps (3), and later by 

Allen Pierce (4) (again in the 1980’s) as he applies these methods to acoustics. In both cases, the 

method was used to predict intensity only. However, as exemplified by Deschamps’ 1972 paper, the 

method can also be applied with sensitivity to phase - although the technique used here is slightly 

different (bearing more resemblance to the Biot-Tolstoy-Medwin-Svensson (5) method of edge 

diffraction impulse response construction). 

2.2 Inverse Square Law as an Over-simplification of Wave-front Curvature 

The nearly ubiquitous inverse-square law of intensity is traditionally used to predict the power at 

a given distance from a spherical emitter. It can be used no matter how many sound reflections the 

sound has encountered by adding the length of each leg of the sound’s journey to the total radius, 

which is technically correct as long as nothing upsets the shape of the wave-front. In the equation 

below, I is the intensity at a distance r from the source, and W is the source power.  

 

𝐼 =
𝑊

4𝜋𝑟2
 (1) 

 

When a curved surface becomes the reflecting object, the wave-front may take on a different 

propagation form. The impact of the curved surface on the wave-front can be predicted by 

considering the curvature of the wave-front. This is typically represented by the curvature K, which 

can be found for any given curve in terms of its minimum principal curvature and maximum 

curvature, along with the respective tangent vectors along the radii. (See Figure 1, below) 

The curvature K is the inverse of the radii, and is typically stored in a 2x2 curvature Tensor that can 

be rotated in order to apply the data to a variety of tangent spaces. (3) (4) 

 

[𝐾] =  [    

1

𝑟𝑎
0

0
1

𝑟𝑏

    ] = [    
𝑔11 𝑔12

𝑔21 𝑔22
    ] (2) 

The determinant of this tensor is always the gaussian curvature ( 1 / ra rb ), regardless of rotation 

which is identical to the inverse square radius term of inverse-square law for the case of a spherical 

wave. Deschamps uses the curvature as a means for predicting the intensity of a wave-front in his 1972 

paper, effectively as a replacement for inverse-square law.(3) For a spherical wave, either case could 

be used, and for any other wave-form, the curvature tensor [K] would yield a more complete result. 

𝑊

4𝜋𝑟2
= 

𝑊

4𝜋
∗ |𝑑𝑒𝑡[𝐾]| (3) 
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Figure 1 – A typical curvature representation of a curved surface. This surface exhibits convex curvature in 

one tangent direction, similarly to a cylinder. 

2.3 Wave-front Curvature Tracing 

Every surface in a room has a curvature tensor similar to that of the wave-front. A flat surface has 

zero curvature in both directions. A concave surface has at least one principal axis with negative 

curvature. A convex surface will have at least one positive non-zero radius and no negative radii. A 

comprehensive handling of wave-front curvature will be able to account for all of these cases. 

   

Figure 2 –Different forms of curvature: (upper left) a fully concave surface, (lower left) a fully convex 

surface, and (right) a saddle shaped surface with mean negative curvature. 

 

A sound wave from a point source initially has equal curvature in both directions. This remains 

the case as long as it only reflects from surfaces with zero curvature. When a wave encou nters a 
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surface with curvature, the waveform is modified by the surface curvature. In order to calculate the 

modification, the wave-front and surface curvature tensors must be rotated to have at least one 

principal tangent vector coincide. In order to find the angle of rotation for each Tensor, you find the 

line of intersection of the planes perpendicular to the surface normal at the point of incidence, and 

the plane perpendicular to the direction of sound (shown in purple in figure 3 below). This line is 

effectively the common vector of both planes. The tensors for the surface and the wave -front need to 

be rotated so that one of the principal radii coincides with this vector. The inverse cosine of the dot 

product of the tangent vector to the principal radii of each curvature tensor and the line of 

intersection gives you the angle of rotation.  

 

 

Figure 3 – Demonstration of the curvature tensor rotation technique. Both tensors must be rotated so that at 

least one of their principal radii coincide with the line of intersection of their respective perpendicular planes. 

ᵠ1 refers to the angle of rotation for the surface curvature tensor. ᵠ2 refers to the angle of rotation for the 

wave-front tensor. 

 

The rotation of the tensors is achieved using the following equation (4) (note that for as long as 

the wave-front is spherical, the orientation of the wave-front axis is arbitrary. Rotation is only 

required for the surface curvature tensor until the second order reflection, at which point wave-front 

rotation is also needed): 

 

[𝐾]′ = [
cos ᵠ − sin ᵠ
sin ᵠ cos ᵠ

] [𝐾] [
cos ᵠ sin ᵠ
−sin ᵠ cos ᵠ

] (4) 

  

Once the wave-front and surface tensors have been rotated to coincide on one principal radius 

each, the remaining radii and the original ray and the normal of the surface  all lie in the same plane. 

The angle between the tangent vectors of the remaining radii can be found. (See figure 4 below) 

Once the angle Ѳ between these vectors is known, the wave-front tensor can be modified according 

to the following equation: 

 

[𝐾]𝑜𝑢𝑡 = [    
𝑔11 −𝑔12

−𝑔21 𝑔22
    ]

𝑤𝑎𝑣𝑒−𝑓𝑟𝑜𝑛𝑡
+ 2 [    

𝑔11 sec Ѳ −𝑔12

−𝑔21 𝑔22 cos Ѳ
    ]

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 (5) 
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Figure 4 – Demonstration of the curvature tensor rotation technique. Both tensors must be rotated so that at 

least one of their principal radii coincide with the line of intersection of their respective perpendicular planes. 

ᵠ1 refers to the angle of rotation for the surface curvature tensor. ᵠ2 refers to the angle of rotation for the 

wave-front tensor. 

Before each reflection, the wave-front tensor should be updated to reflect the distance that sound 

has traveled. Each of the remaining terms should be inverted to the radius form (r = 1/g) of the 

matrix. The incremented distance can then be added to the terms in the primary diagonal of the 

matrix, and the matrix terms inverted back to curvature form. 

[𝐾]′ = 

[
 
 
 

1

𝑟11 + 𝑑
𝑔21

𝑔12

1

𝑟22 + 𝑑]
 
 
 

 

- or - 

[𝐾]−1 = [𝐾]−1 + [
d 0
0 𝑑

] 

(6) 

Where d is the distance traveled following the reflection from the curved surface, and the 

inversion indicated in the second equation is a piecewise inversion of the terms of the matrix only 

(such as g 
-1

 = 1/g, not a full matrix inversion). 

 

2.4 Model Representation and Geometry Querying 

Acoustical analysis via geometrical techniques is still best performed on models composed of 

polygons, for reasons to do with efficiency. NURBS surfaces, however, allow a very precise 

representation of curvature, which is a great advantage where the methods discussed in this paper are 

concerned (without NURBS, curvature would need to be extrapolated from the polygon model, a 

process that would be fraught with assumptions). For this reason, the implementation in Pachyderm 

Acoustic (6) (the author’s open-source software project) utilizes NURBS based models, with 

polygon approximations that are produced by tessellating the surfaces. The method described here is 

performed on the polygon approximations. Each polygon element has curvature information 

attributed (radius tangents and curvature tensors) which was obtained by querying the  NURBS 

model. 

There are a variety of ways to store the information. One could attribute the curvature 

information to each polygon. If this were the preferred approach, it should be noted that a simple 

image-source method would be inadequate to find every possible reflection path. Figure 5 below 

illustrates a convex case in which the image source method would miss a reflection that would exist 
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for the curve represented. Similar cases also exist for concave surfaces. What is needed is a method 

that can account for the normals that exist on the curved surface, but which lie between the polygons 

in the polygon approximation. 

 

Figure 5 – The image source method alone can not find all reflections from curved surfaces. 

 

Another way to account for the information is to attribute the curvature information to each 

polygon edge. Using the edges to find specular reflections is simple – 1) Find the midpoint of a 

direct line from the source to the receiver. 2) Find the closest point on the line through the edge to 

the previously found midpoint. If the point does not lie on the edge, then there is not a valid specular 

reflection. If there is, we move on to the next step. 3) Calculate the normalized vector between the 

midpoint between source and receiver, and it’s closest point on the edge. This vector is the normal 

that would be required to exist on the surface in order for a reflection from the edge to be valid.  4) 

Compare the supposed normal to the normal for the two polygons connected to the edge. If the 

vector lies between both polygon normals, then the reflection is valid. 

For a convex surface, this point is the entire point of reflection. For a concave surface, the point 

indicates that there is a region that encapsulates the point which reflects. The creation of the impulse 

response must account for the full area of the reflection in some way. In the time domain, it must be 

assumed that the power produced by this point is sustained by the region around it as well.  

   

Figure 6 – Edge analysis for finding specular reflections (left) edge closest point operation (right) test for 

existence of normal between faces. 

2.5 Construction of Impulse Responses 

In the case of reflection from surfaces with two non-negative curvatures along the principal axes 

(i.e. flat or convex surfaces), the reflection is very simple, and the full method for calculating it is 

discussed in the previous sections. This is because the extent of reflecting surface area pertaining to 

the specular reflection is a point. For the case of surfaces with concave curvature in at least one 

direction, the reflecting area is larger. In order to fully calculate it, the method in question must  

account for the entire reflecting area. (see figure 7, below) 
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Figure 7 – Reflections found using the algorithm described in section 2.3 for the case of reflections from a 

surface with negative curvature along one axis and two axes, respectively, taken from several positions. 

 

The full magnitude of the reflection must take into account the area of the surface that contributes 

to the reflection. The tributary area of each edge must be integrated. The equation below is used to 

calculate the magnitude of a first order reflection from any given polygon edge on the surface:  

 

𝐼𝑓𝑜𝑐𝑢𝑠(𝑡) =  
1 

4𝜋 
∑𝐴𝑡(𝑖) |det[𝐾]𝑤𝑎𝑣𝑒−𝑓𝑟𝑜𝑛𝑡| ∗ 𝐷(𝑡 − 𝜏)

𝑛

𝑖=1

  (7) 

 

Where n is the number of edges, τ is the time that the reflection from edge i arrives, At is the 

tributary area (or length, if the surface has a negative curvature in only one direction) of the polygon 

edge, [K]wave-front is the curvature of the wave-front at the point it reaches its receiver, and D(t) is a 

distribution function in time, which could be a normal distribution with a width equivalent to the full 

amount of time the edge contributes, or a distribution calculated based on the geometry of the 

tributary area. In the case of the latter, care would need to be taken to ensure that no discontinuities 

exist in the final impulse response. 

 

 

Figure 8 – an illustration of the tributary area of an edge on a polygon forming a larger curved surface. The 

shortest and longest paths to corners of the tributary area must be known in order to understand the 

distribution. Note that the tributary area is assumed to extend to the polygon centroid. 
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In the prediction of sound focusing from curved surfaces, it is not enough to calculate the sum of 

intensity. The pressure created will vary significantly by frequency due to interference that is a result 

of the sustained arrival of the reflection (the closer the source and receiver are to the geometrical 

center of the curved surface, the shorter the reflection will be, and the less interference there will be) . 

The final step is to convert the reflection from intensity to pressure (𝑝 = 𝜌𝑐 √𝐼) and convolve it with 

a signal that embodies the phase and power characteristics of the source. One should also include air 

absorption, surface absorption, and surface scattering in this signal as appropriate. This yields a 

reflection with the correct time, power, and phase characteristics . 

3. CONCLUSIONS AND FUTURE WORK 

At present, the most common and accessible techniques for acoustics simulation in the industry 

falter in accuracy when it comes to reflections from curved surfaces. In this paper, we introduce a 

new technique that can be used in the context of geometrical acoustics simulation programs.  

We have already achieved precise impulse responses for curved surface reflections. Because the 

great variety in shapes of reflecting areas that can occur on curved surfaces, and the limited space 

allowed for this paper, we do not include examples of the reflection impulse response, because any 

example would not be representative. We will show several examples at the lecture associated with 

this paper. 

Future objectives include benchmarking for the new method (and adjustments, as needed), 

integration with other techniques, such as the BTM edge diffraction technique (the technique used by 

Pachyderm), and development of a formula for higher order prediction, for accurate prediction of 

whisper gallery effects and other focusing phenomena for auralization. 
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